Mathematics 700 Homework.

- 1. This problem is a warm up for some of the machinery that we will need to understand normal forms for similarity which is the high point of the class. Let V be a vector space and let U, W be subspaces of V so that U+W=V and $U\cap W=\{0\}$. Then you have shown in an old homework (page 40, problem 9) that every $v\in V$ can then be uniquely expressed as v=u+w where $u\in U$ and $w\in W$. In this case we write $V=U\oplus W$ and say that V is the **direct sum** of U and W. (To be redundant (but explicit) if from now on you hear that V is a direct sum of U and W (or see the formula $V=U\oplus W$) then you are immediately to think that U and W are subspaces of V with U+W=V, $U\cap W=\{0\}$ and also remember that in particular this means that every $v\in V$ can be uniquely written as v=u+w with $u\in U$ and $w\in W$.)
 - (a) If $V = U \oplus W$ and u_1, \ldots, u_k is a basis of U and w_1, \ldots, w_m is a basis of W then show $u_1, \ldots, u_k, w_1, \ldots, w_m$ is a basis of V. Thus

$$\dim V = \dim U + \dim W.$$

REMARK: This also follows from the formula $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$.

(b) If $V = U \oplus W$ then define a linear map $P: V \to V$ by

$$Pv = u$$
 where $v = u + w$ with $u \in U$ and $w \in W$

P is called the **projection of** V **onto** U **with kernel** W.

- i. Show Image P = U and Ker P = W.
- ii. Show that $P^2 = P$.
- iii. Show Pu = u if and only if $u \in U$.
- (c) Let $P: V \to V$ be a linear map that satisfies $P^2 = P$. (Remark: Linear maps P satisfying $P^2 = P$ are called **projections**. They occur very naturally in both algebra and analysis.)
 - i. Show

$$V = \operatorname{Image} P \oplus \operatorname{Ker} P$$
.

(HINT: Every $v \in V$ can be written as v = Pv + (v - Pv).)

- ii. Let $k = \operatorname{rank} P = \dim \operatorname{Image} P$ and let v_1, \ldots, v_k be a basis for $\operatorname{Image} P$ and v_{k+1}, \ldots, v_n (where $n = \dim V$) be a basis of $\operatorname{Ker} P$. Then by the first problem above v_1, \ldots, v_n is a basis of V. What is the matrix of P in this basis?
- (d) Let $T: V \to V$ be a linear map that satisfies the equation $T^2 = I$ (where I is the identity transformation.) Then as a variant on the last problem
 - i. Show

$$V = \operatorname{Ker}(T - I) \oplus \operatorname{Ker}(T + I).$$

- ii. If v_1, \ldots, v_n is a basis if V so that v_1, \ldots, v_k is a basis of $\operatorname{Ker}(T-I)$ and v_{k+1}, \ldots, v_n is a basis of $\operatorname{Ker}(T+I)$ then what is the matrix of T in this basis?
- iii. Can you generalize to T that satisfy other polynomial equations? For example what if T satisfies $T^3 = T$? **Remark:** If you don't see a generalization don't spend much time on this. If you do see what is going on it is worth pursuing as it will give you a leg up on much of what we will be doing.

Quotient Spaces

Let V be a vector space over the field **F** and W a subspace of V. Then define an equivalence relation \sim_W by

$$v_1 \sim_W v_2$$
 if and only if $v_2 - v_1 \in W$.

Problem 1 Show that this is an equivalence relation.

Denote by $[v]_W$ the equivalence class of $v \in V$ under the equivalence relation \sim_W . That is

$$[v]_W := \{ u \in V : u \sim_W v \}.$$

Problem 2 Show $[v]_W = v + W$ where $v + W = \{v + w : w \in W\}$.

Let V/W be the set of all equivalence classes of \sim_W . That is

$$V/W := \{ [v]_W : v \in V \} = \{ v + W : v \in V \}.$$

The equivalence class $[v]_W = v + W$ is often called the **coset** of v in V/W.

Problem 3 Let $V = \mathbb{R}^2$ and let W be the subspace of points of V of points (x, y) with y = -2x. Then draw pictures of the coset of (1, 1) in V/W and the coset of (3, -2) in V/W. What is a geometric description of the coset of $v \in \mathbb{R}$ in V/W?

Define a sum and scalar multiplication in V/W by

$$[v_1]_W + [v_2]_W := [v_1 + v_2]_W \quad c[v]_W := [cv]_W$$

where $v_1, v_2, v \in V$ and $c \in \mathbf{F}$.

Problem 4 Show this is well defined. The term **well defined** is used in mathematics to mean "is independent of the choices made in the definition". In this particular case this means you need to show

$$[v_1]_W = [v'_1]_W$$
 and $[v_2]_W = [v'_2]_W$ implies $[v_1 + v_2]_W = [v'_1 + v'_2]_W$

and

$$[v]_W = [v']_W$$
 implies $[cv]_W = [cv']_W$.

Proposition 0.1 With these operations V/W is a vector space.

Problem 5 Prove this.

Problem 6 If V is finite dimensional then what is the dimension of V/W in terms of dim V and dim W? Prove your answer is correct.

Problem 7 In the example of problem 3 draw some pictures of cosets $v_2 + W$ and $v_2 + W$ what their sum $(v_1 + W) + (v_2 + W)$ and the linear combination $2(v_1 + W) - 3(v_2 + W)$ for a few choices of v_1 and v_2 .

Other Problems

Note that what I have been calling *eigenvalues* is what the book calls *characteristic values*.

1. Let

$$A := \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

be a two by two matrix. As usual trace A = a + d, det A = ad - bc. Set $f(x) = x^2 - (\operatorname{trace} A)x + \det A$. Show f(A) = 0. Show the minimal polynomial of A divides f(x).

2. Let A be the matrix

$$A := \left[\begin{array}{cc} 0 & 1 \\ -2 & 3 \end{array} \right]$$

- (a) Use the last problem to find the minimal polynomial of A.
- (b) Find the eigenvalues of A.
- (c) Find a formula for A^n . HINT: Find a basis of \mathbb{R}^2 of eigenvectors of A. In this basis it is easy to compute powers of A. Do the computation in this basis and then change back to the standard basis.
- 3. Define a sequence $x_0=0, x_1=1$ and $x_{k+1}=3x_k-2x_{k-1}$ for $k\geq 1$. Let A be the matrix in the last problem. Then show

$$A \begin{bmatrix} x_{k-1} \\ x_k \end{bmatrix} = \begin{bmatrix} x_k \\ x_{k+1} \end{bmatrix}$$
 and $A^k \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_k \\ x_{k+1} \end{bmatrix}$.

Now find a formula for x_k . HINT: By the last problem you have a formula for A^k .