Math 554 Homework.

The last main topic to cover on derivatives is the derivatives of inverse functions.

Theorem 1. Let $f:(a,b) \to (A,B)$ be continuous and bijective. Assume that f is differentiable at $x_0 \in I$ with $f'(x_0) \neq 0$. Then $f^{-1}:(A,B)$ is differentiable at $y_0 := f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}.$$

Proof. For $y \in (A, B)$ let $x = f^{-1}(y)$, then we also have y = f(x). A previous theorem tells us that f^{-1} is continuous. Therefore

$$\lim_{y \to y_0} x = \lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0) = x_0.$$

and

$$\lim_{x \to x_0} y = \lim_{x \to x_0} f(x) = f(x_0) = y_0.$$

That is $y \to y_0$ if and only if $x \to x_0$. Thus

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(x_0)}{y - y_0}$$

$$= \lim_{y \to y_0} \frac{x - x_0}{f(x) - f(x_0)} \qquad \text{(Substitute } x = f^{-1}(y) \text{ etc.)}$$

$$= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} \qquad \text{(As } y \to y_0 \iff x \to x_0.)$$

$$= \lim_{x \to x_0} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} \qquad \text{(A bit of algebra.)}$$

$$= \frac{1}{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} \qquad \text{(As } h(t) = \frac{1}{t} \text{ is continuous.)}$$

$$= \frac{1}{f'(x_0)} \qquad \text{(As } f'(x_0) \text{ exists.)}$$

This completes the proof.

Example 2. We know that the function $f(x) = x^2$ is differentiable on $(0, \infty)$ with $f'(x) \neq 0$ on this interval. Thus the last theorem tells us that the inverse $g(x) = \sqrt{x}$ is also differentiable on $(0, \infty)$. To find its derivative note that

$$g(x)^2 = x.$$

Take the derivative of this to get

$$2g(x)g'(x) = 1.$$

That is

$$g'(x) = \frac{1}{2g(x)} = \frac{1}{2\sqrt{x}}.$$

Problem 1. Let $f(x) = x^n$ where $n \neq 0$ is an integer (positive or negative). Then f is differentiable on $(0, \infty)$ with $f'(x) = nx^{n-1}$ so that $f'(x) \neq 0$ on $(0, \infty)$. Let $g(x) = x^{1/n}$ be the inverse of f on $(0, \infty)$. The last theorem implies g is differentiable on $(0, \infty)$. As g is the inverse of f we have

$$g(x)^n = x.$$

Take the derivative of this to derive a formula for g'(x). Hint: The answer is $g'(x) = \frac{1}{n}x^{\frac{1}{n}-1}$.

Problem 2. Let m, n be non-zero integers and let $r = \frac{m}{n}$. Set $f(x) = x^r$. Show f is differentiable on $(0, \infty)$ and

$$f'(x) = rx^{r-1}.$$

Hint: Write $f(x) = (x^{1/n})^m$ and combine rules that we know.

Problem 3. Let f be defined and differentiable on $(0, \infty)$ and assume that f(x) > 0 on $(0, \infty)$ and that f'(x) = cf(x) where $c \neq 0$ is a constant. Let g be the inverse of f(x). Find a formula for g'(x). Hint: Start with f(g(x)) = x and take the derivative.

Problem 4. To generalize the last problem, let $f:(a,b) \to (A,B)$ be differentiable and have inverse $g:(A,B) \to (a,b)$. Assume that there is a function ϕ such that

$$f'(x) = \phi(f(x)).$$

Then show

$$g'(x) = \frac{1}{\phi(x)}.$$

Remark 3. As an example of the last problem let $f(x) = \sin(x)$ on $(-\pi/2, \pi/2)$. Then $f: (-\pi/2, \pi/2) \to (-1, 1)$ is differentiable with inverse $g(x) = \arcsin(x)$. On $(-\pi/2, \pi/2)$ we have that $f'(x) = \cos(x)$ is positive and therefore

$$f'(x) = \cos(x) = \sqrt{1 - \sin^2(x)} = \sqrt{1 - f(x)^2} = \phi(f(x))$$

with $\phi(x) = \sqrt{1 - x^2}$. Whence

$$\arcsin'(x) = g'(x) = \frac{1}{\phi(x)} = \frac{1}{\sqrt{1 - x^2}}.$$