Mathematics 574 Homework

Read sections 2.1 and 2.2 in the text.

Here is some review of Math 142 that we will be using. Let f(x) be a from some open interval (a,b) containing 0. Then recall that f(x) has a **Taylor series**¹

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

We now derive formulas for the coefficients x_n . To start with we will write f(x) as

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

and first find a formula for a_0 .

Problem 1. Let x = 0 if the formula for f(x) to show that $a_0 = f(0)$. \square

Problem 2. We now take some derivatives of f(x). Show the following

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + \cdots$$

$$f''(x) = 2a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + 5 \cdot 4a_5x^3 + 6 \cdot 5a_6x^5 + \cdots$$

$$f'''(x) = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4x + 5 \cdot 4 \cdot 3a_5x^2 + 6 \cdot 5 \cdot 4a_6x^3 + \cdots$$

$$f^{(4)}(x) = 4 \cdot 3 \cdot 2a_4 + 5 \cdot 4 \cdot 3 \cdot 2a_5x + 6 \cdot 5 \cdot 4 \cdot 3a_6x^2 + \cdots$$

$$f^{(5)}(x) = 5 \cdot 4 \cdot 3 \cdot 2a_5 + 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2a_6x + \cdots$$

Problem 3. If we let x = 0 in the formula for f'(x) we get $f'(x) = a_1 + 0 = a_1$. Thus $a_1 = f'(x)$. If we let x = 0 in the formula for f''(x) we get

$$f''(x) = 2a_0 + 0 = 2a_2$$

and whence

$$a_2 = \frac{f''(0)}{2}$$

- (a) Let x = 0 in the formula for f'''(0) to get a formula for a_3 .
- (b) Let x=0 in the formula for $f^{(4)}(x)$ to get a formula for a_4 .
- (c) Let x = 0 in the formula for $f^{(5)}(x)$ to get a formula for a_5 .

Problem 4. After the last problem your can probably guess what this problem will be. Compute the *n*-th derivative $f^{(n)}(x)$ and let x = 0 in this formula to show that

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

Putting these pieces together we have

¹Not every function has a Taylor series. We will only get working with ones that do, so we will just assume all functions that come up do have power series.

Theorem 1. If the function f(x) has a Taylor series around x = 0, then

$$f(x) = \sum_{n=0}^{\infty} a_n x$$
 where $a_n = \frac{f^{(n)}(0)}{n!}$.

Here is an example. Let

$$f(x) = \frac{1}{1+x} = (1+x)^{-1}.$$

Then we have

$$f'(x) = -(1+x)^{-2}$$

$$f''(x) = (-1)(-2)(1+x)^{-3}$$

$$f'''(x) = (-1)(-2)(-3)(1+x)^{-4}$$

$$f^{(4)}(x) = (-1)(-2)(-3)(-4)(1+x)^{-5}$$

$$\vdots \qquad \vdots$$

$$f^{(n)} = (-1)(-2)(-3)\cdots(-n)(1+x)^{-n-1}$$

Thus

$$f^{(n)}(0) = (-1)(-2)(-3)\cdots(-n)(1+0)^{-n-1} = (-1)^n n!$$

and therefore

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{(-1)^n n!}{n!} = (-1)^n.$$

This gives

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + \dots$$

Problem 5. Here is a generalization of this for you to do. Let α be any real number and set

$$f(x) = (1+x)^{\alpha}.$$

Then

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$

$$f^{(4)}(x) = \alpha(\alpha-1)(\alpha-2)(\alpha-3)(1+x)^{\alpha-4}$$

$$f^{(5)}(x) = \alpha(\alpha-1)(\alpha-2)(\alpha-3)(\alpha-4)(1+x)^{\alpha-5}$$

$$\vdots \qquad \vdots$$

Use this start to get a formula for $f^{(n)}(x)$ and use it to find a formula for the coefficient a_n in the Taylor series of f(x).

As we saw in class the answer to the last question is

$$a_n = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} = \frac{\alpha^n}{n!}.$$

This motivates the following:

Definition 2. Let α be any real number and k an integer. Then the **binormal coefficient** $\binom{\alpha}{k}$ is

$$\binom{\alpha}{k} = \frac{\alpha^{\underline{k}}}{k!}$$

for $k \geq 0$ and

$$\binom{\alpha}{k} = 0$$

when k < 0.

We have at least formally proven the following

Theorem 3. Let α be any real number and |x| < 1. Then

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k}.$$

For some values of α the binomial coefficient $\binom{\alpha}{k}$ can be simplified. This is particularly true if α is a negative integer. Here are some examples for the first few negative integers. First $\alpha = -1$.

$$\binom{-1}{k} = \frac{(-1)(-2)\cdots(-k)}{k!}$$

$$= (-1)^k \frac{k!}{k!}$$

$$= (-1)^k.$$

Next $\alpha = -2$.

$${\binom{-2}{k}} = \frac{(-2)(-3)\cdots(-k)(-k-1)}{k!}$$
$$= (-1)^k \frac{(k+1)!}{k!}$$
$$= (-1)^k (k+1)$$

For k = -3

$$\binom{-3}{k} = \frac{(-3)(-4)\cdots(-k-1)(-k-2)}{k!}$$

$$= (-1)^k \frac{(k+2)!}{2!k!}$$

$$= (-1)^k \frac{(k+1)(k+2)}{2!k!}$$

$$= (-1)^k \binom{k+2}{2}$$

For k = -4

$${\binom{-4}{k}} = \frac{(-4)(-5)\cdots(-k-2)(-k-3)}{k!}$$

$$= (-1)^k \frac{(k+3)!}{3!k!}$$

$$= (-1)^k \frac{(k+1)(k+2)}{3!k!}$$

$$= (-1)^k {\binom{k+3}{3}}$$

For k = 5

$${\binom{-5}{k}} = \frac{(-5)(-6)\cdots(-k-3)(-k-4)}{k!}$$

$$= (-1)^k \frac{(k+4)!}{4!k!}$$

$$= (-1)^k \frac{(k+1)(k+2)}{4!k!}$$

$$= (-1)^k {\binom{k+3}{4}}$$

At this point we see a pattern.

Proposition 4. Let n be a positive integer. Then

$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$$

Problem 6. Prove this.

We proved the following in class.

Proposition 5. If

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 and $g(x) = \sum_{k=0}^{\infty} b_k x^k$

then the product is

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} a_i b_j\right) x^k.$$

Proposition 6. The binomial coefficients satisfy the identity

$$\binom{\alpha+\beta}{k} = \sum_{i+j=k} \binom{\alpha}{i} \binom{\beta}{j}.$$

Problem 7. Prove this. *Hint:* Use that $(1+x)^{\alpha}(1+x)^{\beta} = (1+x)^{\alpha+\beta}$ Now we know by Proposition 3 that.

$$(1+x)^{\alpha+\beta} = \sum_{k=0}^{\infty} {\alpha+\beta \choose k} x^k.$$

We can compute

$$(1+x)^{\alpha+\beta} = (1+x)^{\alpha}(1+x)^{\beta}$$

using Proposition 6. Then compare coefficients to get the result.

We also have shown

Proposition 7. If

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ and $h(x) = \sum_{n=0}^{\infty} c_n x^n$

 $then\ the\ product\ of\ the\ three\ is$

$$f(x)g(x)h(x) = \sum_{n=0}^{\infty} \left(\sum_{i+j+k=n} a_i b_j c_k\right) x^k.$$

Problem 8. Let α , β , and γ be three real numbers. Use

$$(1+x)^{\alpha}(1+x)^{\beta}(1+x)^{\gamma} = (1+x)^{\alpha+\beta+\gamma}$$

and the last proposition to to derive an identity involving $\binom{\alpha+\beta+\gamma}{n}$ similar to the identity to the identity for $\binom{\alpha+\beta}{k}$ given in Proposition 6. \square

Problem 9. Let

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

and let

$$A_0 = a_0, \ A_1 = a_0 + a_1, \ A_2 = a_0 + a_1 + a_2, \ A_3 = a_0 + a_1 + a_2 + a_3, \dots$$

and in general $A_n = a_0 + a_1 + \dots + a_n$. Show that
 $(1+x+x^2+x^3+x^4+x^5+x^6+\dots)f(x) = A_0 + A_1x + A_2x^2 + A_3x^3 + A_4x^4 + \dots$

and that this can be rewritten as

$$(1-x)^{-1}f(x) = \sum_{n=0}^{\infty} A_n x^n.$$

Problem 10. Let α be a real number and let

$$s_n = \sum_{k=0}^n \binom{\alpha}{k}.$$

Show the generating function for s_n is given by

$$\sum_{n=0}^{\infty} s_n x^n = \frac{(1+x)^{\alpha}}{(1-x)}.$$

Hint: Use the previous problem.

Now let us see how generating functions can be useful in solving some combinatorics problems. Let

$$A = \{1, 2, 5\}$$
 and $B = \{0, 3, 4, 5\}$

Then for each n wish to find the number of solutions to a+b=n with $a\in A$ and $b\in B$. To do this let

$$f_A(x) = \sum_{a \in A} x^a = x + x^2 + x^5.$$

$$f_B(x) = \sum_{b \in B} x^b = 1 + x^3 + x^4 + x^5.$$

Note that we can also write $f_A(x)$ as

$$f_A(x) = \sum_{n=0}^{\infty} a_n x^n$$

where

$$a_n = \begin{cases} 1, & n \in A; \\ 0, & n \notin A. \end{cases}$$

Problem 11. Let s_n be the number of solutions to a+b=n with $a\in A$ and $b\in B$ explain why

$$\sum_{n=0}^{\infty} s_n x^n = f_A(x) f_B(x).$$

The point of this problem is not just to get homework points, but to write out an argument that convinces you this is true. \Box

Using the last problem we have

$$\sum_{n=0}^{\infty} s_n x^n = f_A(x) f_B(x)$$

$$= (x + x^2 + x^5) (1 + x^3 + x^4 + x^5)$$

$$= x + x^2 + x^4 + 3x^5 + 2x^6 + x^7 + x^8 + x^9 + x^{10}.$$

Therefore $s_5 = 3$, that is a + b = 5 with $a \in A$ and $b \in B$ has 3 solutions. Also $s_{11} = 0$ which implies that a + b = 11 with with $a \in A$ and $b \in B$ has no solutions (which is clear anyway).

Here is an example we talked about in class. If we roll a six sided die, then the generating function is

$$f(x) = x + x^2 + x^3 + x^4 + x^5 + x^6.$$

Now roll five six sides dice. Then what is the number of ways we can get a 20? This will be the coefficient of x^{20} in $f(x)^5$. We now go to WolframAlpha http://www.wolframalpha.com/ and have it compute $f(x)^5$. The result is:

$$f(x)^5 = x^{30} + 5x^{29} + 15x^{28} + 35x^{27} + 70x^{26} + 126x^{25}$$

$$+ 205x^{24} + 305x^{23} + 420x^{22} + 540x^{21} + 651x^{20}$$

$$+ 735x^{19} + 780x^{18} + 780x^{17} + 735x^{16}$$

$$+ 651x^{15} + 540x^{14} + 420x^{13} + 305x^{12} + 205x^{11} + 126x^{10}$$

$$+ 70x^9 + 35x^8 + 15x^7 + 5x^6 + x^5$$

Thus we see that the number of ways to roll a 20 using five dice is 651. We also see that the number of ways roll a 17 is 780.

Problem 12. Pictured are two ways to make a four sided die.

FIGURE 1

Use WolframAlpha or Maple or some other computer algebra system to do the following.

- (a) If we roll 10 four sides dice how many ways are there to get a 30?
- (b) If we roll 3 four side dice and 3 six sided dice, then how many ways are there to get a 20? $\hfill\Box$