Mathematics 172 Homework, August 29, 2023.

Let \mathcal{A} be some object or organism, say a dog. Let \mathcal{B} be a copy of \mathcal{A} that is **magnified** (or **scaled**) by a factor of λ . So if $\lambda = 2$ we have a copy that is exactly twice as large as \mathcal{A} . If $\lambda = .5$ then \mathcal{B} is one half as large as \mathcal{A} .

The basic idea of scaling is to understand how various measurements change under scaling:

	Scale by λ
Measurements with units of area (say cm ²)	Scale by λ^2
Measurements with units of volume (say cm ³)	Scale by λ^3
Measurements with units of mass or weight (say kg)	Scale by λ^3

1. A tank contains 75 gallons of water. How much does a tank that is scaled by a factor of 3 (that is three times as large) contain?

Solution: Here we have $\lambda=3$ and we are measuring volume so the volume scales by λ^3 thus the volume of the larger tank is

$$(3)^375 = 2025$$
 gallons.

2. The surface area of the tank in Problem 1 is 100 ft². What is the surface area of the tank that is scaled by a factor of $\lambda = .5$ (that is half as large as the original tank).

Solution: This scales by λ^2 so the new surface area is $(.5)^2 100 = 25 ft^2$,

- **3.** If we have two fish with the same shape, by one is 30cmlong and the second is 45cmlong.
- (a) What is the scaling factor, λ , to scale the smaller fish up to the size of the larger fish.

Solution: We need to solve $\lambda 30 \text{ cm} = 45 \text{ cm}$. This gives $\lambda = 45/30 = 1.5$.

(b) If the smaller fish weighs 0.3 kg, then what is the weight of the larger fish?

Solution: Weight scales by λ^3 so the weight of the larger fish is $(1.5)^3(.3) = 1.0125$ kg.