Homework assigned Friday, January 27.

The following rate equation is sometimes used as a variant on the logistic equation.

 $\frac{dN}{dt} = rN\left(1 - \left(NK\right)^{\theta}\right)$

where, as usual, r is the intrinsic growth rate and K is carrying capacity. The parameter θ can be chosen make the equation fit data. Here is a particular case

(1)
$$\frac{dN}{dt} = .1N \left(1 - \left(\frac{N}{1,000} \right)^{1.4} \right)$$

Problem 1. Draw a graph if $\frac{dN}{dt}$ as a function of N for $0 \le N \le 1,200$.

Problem 2. What are the stationary solutions? Answer: N = 0 and N = 1,000.

Problem 3. If the population is now harvested at a rate of 20 the rate equation becomes

$$\frac{dN}{dt} = .1N \left(1 - \left(\frac{N}{1,000} \right)^{1.4} \right) - 20.$$

Graph $\frac{dN}{dt}$ as a function of N for $0 \le N \le 1,000$, use this to find the stationary solutions and graph the solutions with $N(0)=1000,\,N(0)=50$ and determine which of the stationary solutions is stable. Answers: The stationary solutions are N=229.1 and N=818.7. The stationary solutions N=818.7 is stable.

Problem 4. Starting with a population that grows by the rate equation (1) what is the largest harvesting rate that can be used without killing off the population? Answer: This largest harvesting rate is the maximum of $.1N\left(1-\left(\frac{N}{1,000}\right)^{1.4}\right)$ on $0 \le N \le 1,000$. Using the graph from problem 1 and the calculator compute this maximum to be 31.23