Mathematics 555

The problems are 25 points each.

1. (a) Let f be defined on a open interval containing the points a. State the definition of f being differentiable at a.

(b) Assume that f is differentiable at a and that $f(a) \neq 0$. Use the definition of the derivative to show that the function $g(x) = \frac{1}{f(x)}$ is differentiable at a and that $g'(a) = \frac{-f'(a)}{f(a)^2}$.

(b) State the Mean	$Value\ Theorem.$		
(c) Use Rolle's Theo	orem to prove the Mean Value	e Theorem.	

2. (a) State Rolle's Theorem.

3.	(a) Let	$\langle f_n \rangle_{k=1}^{\infty}$	be a	sequence	of func	tions or	n the	interval	[a,b].	Give t	he	definition	of
$\lim_{k \to \infty} f_k(x) = f(x)$													

uniformly on [a,b].

(b) Prove that if each f_k is continuous and $\lim_{k\to\infty} f_k(x) = f(x)$ uniformly on [a,b] then f is also continuous. (That is show that a uniformly convergent sequence of continuous functions has a continuous limit.)

4. Let the function f(x) be defined by

$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{k!} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \frac{x^8}{4!} + \frac{x^{10}}{5!} + \frac{x^{12}}{6!} + \frac{x^{14}}{7!} + \cdots$$

(a) What is the interval of convergence of this series?

(b) Show that on the interval of convergence that

$$f'(x) = 2xf(x).$$

- **5.** Give examples of the following:
 - (a) A sequence of continuous f_k : [0, 1] such that

$$\lim_{k \to \infty} f_k(x) = 0$$

pointwise but

$$\lim_{k \to \infty} \int_0^1 f_k(x) \, dx = 1.$$

(b) A sequence of continuous f_k : [0, 1] such that that converges pointwise to a function f, but f is not continuous.

(c) A convergent series that is not absolutely convergent.

(d) A function f(x,y) defined on \mathbf{R}^2 such that

 $\lim_{x \to 0} \lim_{y \to 0} f(x, y) \neq \lim_{y \to 0} \lim_{x \to 0} f(x, y)$

(e) A function that is not Riemannian integrable.

6. For each positive integer n let

$$K_n(x) = \begin{cases} \frac{n}{2}, & |x| < \frac{1}{n}; \\ 0, & |x| > \frac{1}{n}. \end{cases}$$

(a) Graph $y = K_n(x)$.

(b) Show $\int_{-\infty}^{\infty} K_n(y) dy = 1$ (you can use your graph and geometry to do this) and use this to show

$$f(x) = \int_{-\infty}^{\infty} f(x) K_n(y) \, dy$$

(c) Let $f : \mathbf{R} \to \mathbf{R}$ be continuous and set

$$f_n(x) = \int_{-\infty}^{\infty} f(x - y) K_n(y) \, dy$$

With the same notation as above show

$$f_n(x) - f(x) = \frac{n}{2} \int_{-1/n}^{1/n} (f(x-y) - f(x)) dy$$

(d) Finally, using that f is continuous, at x show

$$\lim_{n \to \infty} f_n(x) = f(x).$$