Mathematics 300 Homework.

This homework is based on Section 3.1, Pages 82–90. The following definition will be on the quiz on Monday.

Definition 1. If a and b are integers with $a \neq 0$, then a **divides** b if and only if there is an integer q such that b = qa.

We use the notation $a \mid b$ for "a divides b". When this holds we say that a is a **divisor** or a factor of b and that b is a **multiple** of a. If a does not divide b, then we write $a \nmid b$.

Here are examples of using this definition in proofs.

Proposition 2. If a divides b and a divides c, then a divides difference b-c.

Proof. Assume that $a \mid b$ and $a \mid c$. Then by definition there are integers q_1 and q_2 such that

$$b = q_1 a$$
$$c = q_2 a.$$

Then

$$b-c = q_1a - q_2a = (q_1 - q_2)a = q'a$$

where $q'=q_1-q_2$ is an integer by the closure properties of the integers. Therefore $a\mid (b-c)$.

Here the symbol \Box is used to indicate the end of the proof. Here is anther example:

Proposition 3. If $n \mid x$ and $n \mid y$, then $n^2 \mid (2x^2 + 4xy)$.

Proof. We are give that $n\mid x$ and $n\mid y$ and therefore there are integers k and ℓ such that

$$x = kn$$
$$y = \ell n.$$

Then

$$2x^{2} + 4xy = 2(kn)^{2} + 4(kn)(\ell n)$$
$$= 2k^{2}n^{2} + 4k\ell n^{n}$$
$$= (2k^{2} + 4k\ell)n^{2}$$
$$= qn^{2}$$

where $q = 2k^2 + 4\ell k$ is an integer by the Closure properties of the integers. Thus $n^2 \mid (2x^2 + 4xy)$.

Assigned problems: On Page 96 of the text do problems 1 (part (a) is done above), 2ad, 3bdefg.